The goal of this paper is to bridge the gap between stream processing and ad-hoc queries in SPEs by sharing computation and resources.

We define three main requirements for ad-hoc shared stream processing:

- **Integration**: Ad-hoc query processing should be a composable layer which can extend stream operators, such as join, aggregation, and window operators.
- **Consistency**: Ad-hoc query creation and deletion must be performed in a consistent manner and ensure exactly-once semantics and correctness.
- **Performance**: In contrast to state-of-the-art SPEs, ad-hoc SPE should not only maximize data throughput but also query performance via incremental computation and resource sharing.

AStream is the first system that supports distributed ad-hoc stream processing. We design AStream based on the requirements listed above.

AStream vs Naive Data Model

<table>
<thead>
<tr>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q5</td>
<td>Q6</td>
</tr>
</tbody>
</table>

Q1 and Q1 are created. Q2 deleted, Q3 created. Q2 deleted, Q3 created (naive data model)

AStream: Ad-hoc Shared Stream Processing

We design AStream based on the requirements listed above.

System Architecture

- **Incremental query processing**
- **Memory efficient dynamic slice data structure**
- **Reduced data copy and shuffling**

Experiments

Workload Scenario 1

Workload Scenario 2

Query deployment latency

Blue boxes indicate join operation between two slices and red boxes show deleted slices

Abstract

The goal of this paper is to bridge the gap between stream processing and ad-hoc queries in SPEs by sharing computation and resources. We define three main requirements for ad-hoc shared stream processing:

- **Integration**: Ad-hoc query processing should be a composable layer which can extend stream operators, such as join, aggregation, and window operators.
- **Consistency**: Ad-hoc query creation and deletion must be performed in a consistent manner and ensure exactly-once semantics and correctness.
- **Performance**: In contrast to state-of-the-art SPEs, ad-hoc SPE should not only maximize data throughput but also query performance via incremental computation and resource sharing.

AStream is the first system that supports distributed ad-hoc stream processing. We design AStream based on the requirements listed above.