
≯

Slice 1 (S1)

Changelog(s) S1 ⋈ S2

No changelog t1 t2 ⋈ t7 t8

t3 t4 ⋈ t7 t8

t3 t4 ⋈ t5 t6

10 t1 t2

11 t3 t4

01 t5 t6

10 t7 t8

Slice 2 (S2)

Query-set of joined
tuples

10 AND 10
11 10

0111
AND
AND

= 10
= 10
= 01

>0
>0
>0

10 AND 01 = 0 0
Changelog is 01

(Q1 either deleted or
replaced by another

query)

10 AND 10
11 10

0111
AND
AND

0

10 AND 01

AND 01 = ≯0
0AND 01 = ≯0
01AND 01 = >0

AND 01 0= ≯0
t3 t4 ⋈ t5 t6

AStream: Ad-hoc Shared Stream Processing
Jeyhun Karimov1, Tilmann Rabl2, Volker Markl1,3

1DFKI GmbH, 2HPI, 3TU Berlin
jeyhun.karimov@dfki.de, tilmann.rabl@hpi.de, volker.markl@tu-berlin.de

The goal of this paper is to bridge the gap between stream
processing and ad-hoc queries in SPEs by sharing computation
and resources.
We define three main requirements for ad-hoc shared stream
processing:
• Integration: Ad-hoc query processing should be a composable

layer which can extend stream operators, such as join,
aggregation, and window operators

• Consistency: Ad-hoc query creation and deletion must be
performed in a consistent manner and ensure exactly-once
semantics and correctness

• Performance: In contrast to state-of-the-art SPEs, ad-hoc SPE
should not only maximize data throughput but also query
throughout via incremental computation and resource sharing

AStream is the first system that supports distributed ad-hoc
stream processing.
We design AStream based on the requirements listed above.

Abstract

Q1 and Q1 are created. Q2 deleted, Q3 created. Q2 deleted, Q3 created
(naïve data model) (AStream)

System Architecture

AStream vs Naïve Data Model

SIGMOD 2019

Shared
Session

Stop Q1

Submit Q2

Input
stream(s)

Shared
selection
Instance

Shared
selection
Instance

Shared
selection
Instance

Shared join/
aggregation

instance

Shared join/
aggregation

instance

Shared join/
aggregation

instance

Router
Instance

Submit Q3

Router
Instance

Router
Instance

Output
channel(s)

Output
channel(s)

Output
channel(s)

Shared streaming operator

Shared stream architecture

- Query changelog
- Stream tuple

10 10

Q1

t1

01

TimeT1

t2 t3

Q2
+ +

11

t4

001 100

t5

101

t6 t7

Q1Q2Q3
– +

101

t8

T2 Time

Q1 Q3Q2

01 10

t5

11

t6 t7

10

– +

11

t8

T2 Time

End-to-end ad-hoc query processing
T0 T1 T2 T3 T4 T5 T6

Q1
+

Q1Q2
+

Q3
+

Q1 Q3

Q4
+Q2
–

Q1 Q3Q4
–

Q5
+

Q5 Q3Q4

Q6
+
–

Q7
+

Q5Q4Q6Q7
– –

100 101 011 1100 01101

100T1 100T1
101T2

0T1
001T2
011T3

0T1
0T2
0100T3
1100T4

0T1
0T2

0100T3
0100T4
0110T5

Q3
Q2

Q1

Q4

Q5

Q6
Q7

1 2 3 4 5

1 2 3 4 5

6

6

6

A

B

2⋈2 1⋈1 1⋈2

1⋈3 2⋈1

2⋈3 3⋈1

3⋈2 3⋈3

4⋈4 4⋈3

4⋈2 3⋈4

2⋈4

5⋈5 5⋈4

4⋈5

1

2

3

4

5

Ad-hoc queries

Changelog-sets

Slices

Changelog-sets w.r.t. previous time slots

Query windows

Incremental join

• Incremental query
processing

• Memory efficient
dynamic
slice data structure

• Reduced data copy
and shuffling

Optimizations

Blue boxes indicate join operation between two slices and red
boxes show deleted slices

d

Experiments

0.9M
1.06M

2.5M
3.9M

1.4M
1.5M

3.5M
5.8M

1.3M
1.6M

3.5M4.5M 1.8M
2.15M4.5M

6.1M

Time

Q
ue

ry
 p

ar
al

le
lis

m

Time

Q
ue

ry
 p

ar
al

le
lis

m

Query deployment latency

Flink
AStream

Workload Scenario 2

Workload Scenario 1

