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The goal of this paper is to bridge the gap between stream 
processing and ad-hoc queries in SPEs by sharing computation 
and resources. 
We define three main requirements for ad-hoc shared stream 
processing:
• Integration: Ad-hoc query processing should be a composable 

layer which can extend stream operators, such as join, 
aggregation, and window operators

• Consistency: Ad-hoc query creation and deletion must be 
performed in a consistent manner and ensure exactly-once 
semantics and correctness

• Performance: In contrast to state-of-the-art SPEs, ad-hoc SPE 
should not only maximize data throughput but also query 
throughout via incremental computation and resource sharing

AStream is the first system that supports distributed ad-hoc 
stream processing. 
We design AStream based on the requirements listed above.
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