SIGMOD 2019 **AStream: Ad-hoc Shared Stream Processing** Jeyhun Karimov¹, Tilmann Rabl², Volker Markl^{1,3}

¹DFKI GmbH, ²HPI, ³TU Berlin

jeyhun.karimov@dfki.de, tilmann.rabl@hpi.de, volker.markl@tu-berlin.de

Abstract

The goal of this paper is to bridge the gap between stream processing and ad-hoc queries in SPEs by sharing computation and resources.

We define three main requirements for ad-hoc shared stream processing:

- Integration: Ad-hoc query processing should be a composable layer which can extend stream operators, such as join, aggregation, and window operators
- Consistency: Ad-hoc query creation and deletion must be performed in a consistent manner and ensure exactly-once semantics and correctness
 Performance: In contrast to state-of-the-art SPEs, ad-hoc SPE should not only maximize data throughput but also query throughout via incremental computation and resource sharing

System Architecture

AStream is **the first system** that supports distributed ad-hoc stream processing.

We design AStream based on the requirements listed above.

End-to-end ad-hoc query processing

Blue boxes indicate join operation between two slices and red boxes show deleted slices

German Research Center for Artificial Intelligence

