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Abstract—k-means is the most widely used clustering al-
gorithm due to its fairly straightforward implementations in
various problems. Meanwhile, when the number of clusters
increase, the number of iterations also tend to slightly increase.
However there are still opportunities for improvement as some
studies in the literature indicate. In this study, improved imple-
mentations of k-means algorithm with a centroid calculation
heuristics which results in a performance improvement over
traditional k-means are proposed. Two different versions of
the algorithm for various data sizes are configured, one for
small and the other one for big data implementations. Both
the serial and MapReduce parallel implementations of the
proposed algorithm are tested and analyzed using 2 different
data sets with various number of clusters. The results show
that big data implementation model outperforms the other
compared methods after a certain threshold level and small
data implementation performs better with increasing % value.

Keywords-k-means, Big Data, Hadoop, MapReduce, Cluster-
ing, parallel algorithms, data mining, unsupervised learning;

I. INTRODUCTION

Clustering is the process of separating different objects
and grouping similar ones without explicitly stating how
they are distributed among classes. When the class bound-
aries are known, it becomes a classification problem. For that
reason, clustering is often referred as unsupervised learning.
Even though there are several clustering algorithms exist in
the literature, k-means[1] is by far the most famous and
widely used one, due to its simplicity and acceptance on
several different types of clustering problems.

Our planned achievements in this study are two-fold.
First and foremost, we aimed to improve the k-means
performance by introducing a centroid calculation heuristic
that finds the same clusters faster than the original k-means
algorithm. At the same time, we proposed their parallel
versions of this improved k-means algorithm that would
provide faster performance for a wide range of data sizes
and different number of clusters.

The novelty we provide in this paper is related with
performance. That is, the numerical results of our models
are the same with Standard k-means, but running time is
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reduced considerably. We proposed two separate algorithms
based on the data size. We also implemented both algo-
rithms in distributed environment, to show that they can be
parallelized.

The structure of this paper is as follows: After this brief
introduction, the literature review on different versions of
k-means algorithm and their accomplishments are covered
in Section II. In section III, the proposed models are intro-
duced. In Section IV, the proposed algorithms are analyzed
and discussed. Section V explains the data sets that are used
in this study. Section VI is the Results and Discussions
section where the implementation results and analysis with
the data sets are provided. Finally, we have the conclusions,
suggestions and acknowledgment.

II. LITERATURE REVIEW

k-means [1] is the most widely used algorithm to cluster
data. Its simplicity and applicability makes it popular among
other algorithms. There are some studies implemented on
optimizing different objectives of k-means algorithm such
as Euclidean k-medians [2], [3] and geometric k-center [4].
In Euclidean k-medians, the goal is to minimize the sum
of distances to the nearest center, and in geometric k-center
version, the goal is to minimize the maximum distance from
every point to its nearest center. Another research was done
to seek a better objective function of k-means [5]. In that
particular study, the authors stated that it was not practical
to require the solution of clustering to have minimum sum
of distance squares of all particles from their centroids. This
can be practical when M, N values are small and k£ = 2,
where M is the number of data points, IV is the number of
dimensions and k is the number of clusters. In this paper,
authors suggest that seeking local optima such that there is
no exchange of a point between clusters, will reduce the
sum of squares within a particular cluster.

Even though these different versions of k-means might
have advantages over the original k-means, it is realized that
considerable performance improvement can be achieved by
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parallelizing the process. As a result, several single machine
parallel versions of k-means were proposed [6], [7].

Authors use the concept of canopy to divide data into
clusters in a computationally cheaper way [8]. After that,
clustering is performed on the points that overlap on same
canopies. It is shown that, the complexity of the standard k-
means algorithm is reduced by f—f where c is the number of
canopies and f is the average canopy number that each data
point falls to. In general ¢ is much larger than f. Authors
show in the experiment that was done on n = 1,000, 000,
k = 10,000, ¢ = 1,000, and f is a small constant, the
canopies technique reduces the amount of computation by a
factor of 1,000, where n is the number of data points, k is
the number of clusters

Another improvement to k-means algorithm is the kd-
tree implementation using the filtering algorithm [9]. It is
based on storing the data points on the kd-tree [10]. It
hierarchically divides the point set using axis aligned split-
ting hyperplanes. So, for n points, the algorithm produces a
tree with O(n) nodes and O(log(n)) depth. Authors show
that experimental results were significantly better than other
traditional approaches to clustering.

Yet another improvement to k-means algorithm is pro-
posed by concentrating on the algorithm’s shortcomings
[11]. Authors of this research stated that despite the algo-
rithm’s popularity, it suffered from several issues. According
to the authors, these problems were its computationally
inadequate scalability, dependency on the number of clusters
K and its prone to local minima. Their proposed model - X -
Means- provided the number of classes and their parameters
in a fast and statistically established way. X -means consists
of three main parts:

1) Improve-Params

2) Improve-Structure

3) If K is less than the maximum number of K, stop and
report the best scoring model found during the search
where Improve-Params runs conventional k-means to
convergence, Improve-Structure finds out where new
centroids should appear by splitting some centroids.

Even though there were several attempts to improve the
performance of k-means, since k-means (and its improved
versions) can be parallelized easily and very effectively due
to its nature, it is possible to have more significant perfor-
mance improvement achievements through parallelization of
the serial versions of the algorithm. This can be achieved
with an framework like MapReduce [12], [13].

There has been several studies for clustering large scale
data on distributed systems in parallel on Hadoop [14]. One
such approach is Haloop [15], which is a modified version
of the Hadoop MapReduce framework. The proposed model
dramatically improves the efficiency by making the task
scheduler loop-aware and by adding various caching mech-
anisms. Authors used the k-means algorithm to evaluate

their model against the traditional one and as a result, the
proposed model reduced the query runtimes by 1.85.

Another approach to cluster data in a distributed system
was using Apache Mahout library. Research was done to
cluster the data in the cloud [16]. The tests were running on
Amazon EC2 instances and the comparisons were made to
realize the gain between the nodes. Yet another study was
done to cluster Wikipedia’s latest articles with k-means [17].

Another research was concentrated on MapReduce
model’s lack of directly supporting processing multiple re-
lated heterogeneous datasets [18]. Authors called their model
Map-Reduce-Merge. It adds a Merge phase to the standard
model. This phase can efficiently merge the data already
partitioned and sorted by the map and reduce modules.

There are advantages of MapReduce over parallel
databases like storage-system independence and fine-grain
fault tolerance for large jobs [19]. Since MapReduce model
works on multicore systems, some researchers evaluated
the suitability of the this model for multi-core and multi-
processor systems [20]. Authors of this research studied
Phoenix with multi-core and symmetric multiprocessor sys-
tems. Afterwards, they evaluated its performance potential
and error recovery features. Moreover, they also compared
the codes of MapReduce and P-threads which was written
in lower-level API. As a result, authors concluded that
MapReduce was a promising model for scalable perfor-
mance on shared-memory systems with simple parallel code.
MapReduce model is mostly used in offline jobs, due to its
efficient processing of large data and late response time.
However, authors of [21] researched the online version of
Hadoop MapReduce framework.They propose a solution that
allows users to see “early returns’ from a job while it is being
computed and process continuous queries on the framework.
Authors of [22] also used MapReduce framework to imple-
ment k-means in parallel which is one of the models we
used to evaluate and compare our solution.

I1I. PROPOSED MODEL

Although there are numerous modifications of the k-
means algorithm, both in single machine and in MapReduce
model, the complexity of the algorithm more or less remains
the same. In particular, Standard k-means (k-means-s) model
can not escape from the complexity of the algorithm where
the new centroids and nearest centroids are recalculated each
time [22]. So, in each iteration:

« First part (P1) - All points are processed and the nearest

centroids are found

o Second part (P2) - All points are processed in k groups

to find the new centroids
As can be seen above, reprocessing of all points twice
in each iteration increases the computation time of the
algorithm linearly as the data and k value gets bigger.
Improvement for the first part was done in [23]. However,
this improvement have some disadvantages when working
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with big data. That is why, we further improved the model
proposed in [23] and proposed two new solutions for the par-
allel computation with big data and the serial computation
with non-big data. We will show the threshold between big
data and non-big data for the data sets we used, in Section
VI

The models we propose, namely k-means-inbd (k-means
improved for non-big data or k-means Improved for Serial
Computation) and k-means-ibd (k-means improved for big
data or k-means Improved for Parallel Computation), elim-
inates the majority of the complexity associated with both
parts of the standard parallel k-means [22]. This improve-
ment decreases the computation time and the complexity of
the algorithm considerably. So, let

e x; denote a single data point and S denote all set of
points in data set,where z; € SVi.
. c? € C* denote the centroid computed in ¢ iteration,
where j = {1,2,3,...,k}
. S; denote the set of data points belonging to cz-
. P]? denote the set of newly accepted points to cluster
representing c’
. M; denote the set of outgoing points from cluster
representing ¢
e z; denote the distance between x; and its belonging
centroid.
« v; denote the index of x!" belonging centroid, c! from
the set C*
e « be a constant value denoting threshold value where
O0<a<l.
The first proposed model is k-means-inbd. General pro-
cedure of this model is as follows:
In the first iteration of k-means-inbd, for all data points,
their nearest centroids are calculated and for each z; € S,
we keep z; and v;. After that, new centroids are calculated
as in k-means-s. Beginning from ¢ = 2" iteration, when
computing the nearest centroids for each data point, z; € S,
we calculate d*(x; ¢, ), distance between current data point
and its previous centroid’s new value. That is, czi is newly
computed value of centroid cf;l. If d* < z;, then x; stays in
same cluster. Thus, it can be ignored during the recalculation
of the new centroid. Otherwise, it means that z; has changed
its cluster and it must be considered while recalculating the
new centroids. After processing all data points, only those
that were chosen are considered in the calculation of the new
centroids. So, the calculation of a new centroid is shown with
Formula (1):

_ _ b
o — C; T |S]t 1| — (Xizimi) + (i1 ph)
I |S§-71| —a+b

ey

where ¢} € C" is the j*" centroid among k centroids at "
iteration, [S%~"| is the number of points belonging to ¢,

m{ € M} is i'" point that is drawn out from j'* cluster at

t'" iteration, p! € P! is i*" point that is added to j** cluster

at ¢t iteration, b = |Pf‘ and a = |M Jt‘ The pseudocode of
k-means-inbd is shown in Algorithm (1).

Algorithm 1
1: procedure k-MEANS-INBD(z; € S,Vi , k)
Require:S = {zg,x;...z, }, k is number of clus-

ters
Ensure: cq, co, ..., ¢, centroids
2: Initialize centroids for ¢ = 1.
3: Run k-means with its standard execution for the first

iteration and keep z; and v; V x; € S.

4: Initialize C*, set of resulting centroids at the end of
iteration ¢ = 1.

5 while ¢! # /™! Vj do

6: t=1t+ 1.

7: for all x; € S do

8: Compute distance d' = d(z;,cl, ) and d'~* = z;.

9: if d* < d*~! then continue.

10: else

11 Compute c; € Ct, zt" new associated centroid from
set Ct, where b # j.

12: Pl = PlJ;, add z; to set of new coming points
for centroid ¢},

13: M} = M}|Jz;, add z; to the set of outgoing points
for centroid céfl.

14: Save :vf»h associated z; and v;, to use in the next

iteration.
15: Compute the new centroids using Formula (1).

The second proposed model is k-means-ibd (k-means
improved for big data). The general structure of algorithm
is as follows:

o Before threshold part (BT) - For ¢ iterations until
reaching threshold value, run as k-means-inbd. At each
iteration ¢, compute threshold value ay.

o After threshold part (AT) - if oy > «, then run
Algorithm (3).

The first ¢ iterations until reaching threshold value is as the
same as k-means-inbd. Beginning from (i4-1)!" iteration, we
store centroids of previous iteration and size of all clusters.
The iteration number ¢ is decided as a result of threshold
value «. That is, if the division of data points that changed

t
their clusters to all data points in t*" iteration (o = |P;|) is
less than predefined threshold («), then we can be confident
about clusters’ being mostly stable. Important point is that,
after threshold value is satisfied, in AT part, we do not
keep all points’ associating centroids, but the set of newly
computed centroids, which can fit in memory in big data
sets. In AT part, when recomputing the object assignments
to the new centroids, the first to consider is the previous
cengroid. First we compute x!" previous nearest centroid,
t—

¢;”". When computing the new centroid, begin from gth
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Algorithm 2

Algorithm 3

1: procedure k-MEANS-IBD(x; € S,Vi , k)
Require:S = {zg,2...x,}, k is number of
clusters

Ensure: ci,co, ..., ¢ centroids

2: while a; > o do
3: Run Algorithm (1) for 1 iteration.
Pt
4: Compute o = | g7 overall fraction of points
that changed their existing clusters. Here |Pt| =
A
5: Run Algorithm (3) with required parameters

from this algotihm.

centroid from C*, namely ¢}. If d'~*(x, cz-*l) > d'(zi, c})
, it means that the x; stayed in the same cluster and there
is no need to consider this data point when computing the
new centroids. Otherwise, the data point has changed its
cluster and it must be considered while recalculating a new
centroid. Recalculating the new centroid part is the same as
k-means-inbd. The pseudocode of k-means-ibd is shown in
Algorithm (2).

Since we compared both the parallel and the serial ver-
sions of the proposed models, MapReduce version of k-
means-ibd and k-means-inbd was also implemented. The
algorithm is the same. However, the mapping of the serial
version’s first part (evaluating each data point’s nearest
center) to the parallel version’s mapper phase and the serial
version’s second part (calculating the new centroids after
all data points chose their nearest centers) to the parallel
version’s reducer phase is enhanced. That is, in the mapper
phase we find the data point’s nearest centroid and in the
reducer phase the new centroids are calculated from the
points that changed their cluster.

IV. ANALYSIS OF PROPOSED MODELS

When analyzing the proposed models, we can divide the
k-means-inbd and k-means-ibd into two parts as k-means-s:
o First part - All points are processed and the nearest
centroids are found.
o Second part - All points are processed in k groups to
find the new centroids.
Both k-means-inbd and k-means-ibd have improvements in
the second part. If we examine Figure 1 which explains
Formula (1), it can be seen that there are two main subparts
denoted as 1 and 2. First, denoted as 1, is a computationally
constant time operation. As we will discuss in the exper-
imental results in this paper, it is seen that second part,
denoted as 2, consists of a small minority of the points of
the whole data set, so as the iterations progress, the number
of operations keep decreasing geometrically, i.e. the total
number of operations converges to a constant; hence the
whole formula can become a constant time operation.

1: procedure k-MEANS-IBD-AT(x; € S,Vi , k,
Ct)
Require:S = {z¢,x1...x, }, k is number
of clusters, C* set of current centroids.
Ensure: cq,ca, ..., c;;, centroids
Initialize centroids for ¢ = 1.
while ¢/ # ¢/~ Vj where 0 < j < k do
t=t+1
for all x; € S do
Among previous centroids, find the near-
est centroid c; L e Ot to 2; and
compute distance between them dt b=
d(ml,cz b,
7: Find d} = d(z;,ct), distance from z; to
gth cluster from C*, where j is index of
pa
if d; < d;fl then continue.
: else
10: Compute ¢/ € C', z!" new associated
centroid from set C*?, where b # j.
11: P! = P, add x; to set of new
coming points that belong to centroid c}.
12: M} = M}z, add x; o the set of
outgoing points that belonged to centroid
¢t
13: Save only the set C to be used in the next
iteration.
14: Compute the new centroids using Formula

.

AN

S m) + (o ol

Ir_1| —a+b|

-1
A.SJ;

Figure 1. Improvement done on second part of k-means algorithm

While analyzing the first part of proposed models, in k-
means-ibd model, we are interested in minimizing the overall
data sent from mapper to reducer phase and minimizing
I/O time. The main advantage of k-means-ibd is that, it does
not change the original data after threshold is satisfied. So,
there is no disc-write overhead, in any iteration after oy < av.
Important point here is that, after threshold value is satisfied,
overall points tent to stay in their existing clusters, as we
will see in Section VI. Therefore, we switch to Algorithm
(3). This algorithm keeps only the previous centroids set
which can be kept in the memory for very large data sets.
That is why, as the size of the data gets bigger, k-means-ibd
starts outperforming k-means-inbd in MapReduce parallel
computing model. k-means-inbd on the other hand, have less
complexity compared to k-means-ibd. Because k-means-



inbd model keeps all data points’ previous centroids, after
several steps, calculation of the new centroids is taking O(1)
instead of O(k) time most of the time. However k-means-
inbd has an obvious space disadvantage. That is, when
working with big data, in every iteration, all data points’
centroids must be read and written to the disc, since they
can not be kept in the memory. As it will be seen in Section
VI, there is threshold value for data set depending on the
overhead of writing big data to disc that dominates over k-
means-inbd’s improvement in the first part of the algorithm.
That is why, we considered this algorithm to be the best for
the serial implementation and for the parallel implementation
with upper bound data size.

As demonstrated in [24], the worst-case running time of
k-means is superpolynomial by improving the best known
lower bound from Q(n) iterations to 2V, That is, k-
means always has an upper bound, therefore it always
converges. So, because it always converges, the displacement
speed of centroids must go to zero as iterations go to
some finite number. Therefore, their speed must decrease,
otherwise the algorithm cannot converge. Because centroids’
speed decrease, the points that belong to particular centroid,
tend to stay in that cluster.

V. SYSTEM SETUP AND DATASETS

The experiments were conducted both in serial and par-
allel environment. MapReduce framework of Cloudera’s
Apache Hadoop distribution was used for parallel environ-
ment. The environment consisted of 17 connected computers
with 1000 bit/s Ethernet. Each computer had Intel i7 CPU
and 4GB RAM capacity. Among the 17 computers, 16 of
them were worker nodes and 1 was the master node.

Two different data sets were used to run the experiments.
First data set (DS-1) was, “Individual household electric
power consumption Data Set” ! and the second one (DS-
2) was, “US Census Data (1990) Data Set” 2. The lengths
of feature vectors of DS-1 and DS-2 are 7 and 68 and
the size of data sets are 2075259 and 2458285 instances
respectively. Both data sets were divided into different
number of clusters and the algorithms run with different
initial centroids. Finally, we chose « threshold to be 0.15 in
experiments.

VI. RESULTS AND DISCUSSION

We have performed numerous experiments both in se-
rial and parallel environments. We compared our proposed
improvements with the models proposed in [23], [25] and
standard k-means - (k-means-s) [22]. The complexity and
efficiency of the models described in [23] and [25] are
mainly the same. Therefore we implemented the model
shown in [23] to compare with our proposed algorithms. As

! https://archive.ics.uci.edu/ml/machine-learning-databases/00235/

Zhttps://archive.ics.uci.edu/ml/machine-learning-databases/census 1990-mld/

the authors of [23] called their model as enhanced k-means,
for simplicity we called their model as k-means-e.

Before discussing the results, one important thing is
that, there is no k-means-s in figures, because the graphs
show relative results with respect to k-means-s. Since in
all of the fore-mentioned models we are trying to achieve
improvements over k-means-s, all graphs shown in this
section used k-means-s performance as the basis. This is
accomplished by dividing the result of the particular model
running time by the running time of k-means-s. This can
also be considered as a normalization.
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Figure 2. Comparison of three models in serial environment with DS-1.

Figure 2 shows the comparison of our proposed models
and k-means-e [23] in terms of their efficiency towards k-
means-s [22] with DS-1 in the serial environment. It is clear
that k-means-ibd is less efficient compared to the other two
models. As stated above, all proposed models consist of two
parts: first part and second part. Here k-means-ibd mainly
takes advantage of the improvement of the second part when
compared to k-means-s. k-means-e also takes advantage of
the improvement of the first part, when finding the nearest
centroids. However, k-means-inbd is improved both in the
first and the second part, that is why, it performs better than
the other models. In general, it is obvious that when the
data is small compared to the memory size and in the serial
environment, first part of the models dominates the second
part. That is why, even though k-means-ibd performs better
than k-means-s, it is still slower than the other two models.

Figure 3 shows the same procedure as Figure 2 with DS-2.
It is clearly seen that the overall concept is pretty much the
same. Meanwhile, all models more or less have improved
their performance slightly by decreasing their computation
time. This is due to the fact that the feature vector size in
DS-2 was 68, whereas it was 7 in DS-1. However, k-means-
inbd and k-means-e improved their computation time more
than k-means-ibd, when compared to Figure 2 because k-
means-e¢ and k-means-inbd benefit computationally over k-
means-s in part-1 which is directly related to the vector size,
more than k-means-ibd. As the vector dimension increases,
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Figure 3. Comparison of three models in serial environment with DS-2.

k-means-inbd and k-means-e have more dominance over k-
means-s, since the first part of the proposed models have
dominance over the second part in the serial environment.

The performance improvement over standard k-means
increases with larger k£ values due to the increase in the
number of iterations to converge, as seen in Figures 2 and
3. As the number of iterations increase, we have much more
benefit using our proposed models compared to standard k-
means.
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Figure 4. Comparison of three models in parallel environment with DS-1.

Figure 4 shows the comparison of the proposed mod-
els over k-means-s in the parallel environment. We used
Cloudera’s Hadoop distribution with 17 nodes in this ex-
periment. The main purpose of this experiment was to find
the threshold value for the size of the data set where k-
means-ibd starts outperforming k-means-inbd. Therefore we
simulated DS-1 to have a larger data set. As stated during
the analysis of the algorithms, the main disadvantage of k-
means-e and k-means-inbd is their necessity to keep all data
points’ previous centroids. If the serial environment is used
with a data size that is less than the memory size, they can
be kept in the memory. However with the increasing data
size, it will not be possible to achieve that. In MapReduce

implementation, k-means-e and k-means-inbd change the
data set with their modified centroids and in every iteration
output the result. That is, in every iteration, stated models
read O(2n) data points and output O(2n) data file size. As
the size of the data file gets larger, the dominance of the
improvements keep decreasing due to the increasing I/O time
to output and write to the large disc files. Moreover, reading
time is also increased due to extra O(n) data read in each
iteration. As the iteration number gets larger to converge,
this drawback becomes a major issue for k-means-s and k-
means-inbd. We can see that in Figure 4 for DS-1, k-means-
ibd keeps getting slightly better as the data size increases,
because of the improvement in /O and in the reducer
side of MapReduce. However, k-means-e and k-means-inbd
have a deteriorating performance with the increase in the
data size due to the reason stated above. Another notable
observation is, k-means-e’s data size threshold being less
than k-means-inbd. This is mainly due to the fact that it has
no improvements in the reducer side and all points are sent
from the mapper to the reducer in every iteration. However,
in k-means-inbd as well as in k-means-ibd only those that
have changed their cluster are considered for processing
in the reducer. The reducer and the partition phase take
longer when the data set becomes larger. However, as k-
means-ibd does not send all data points from the mapper
to the reducer, it takes advantage of the reducer phase
improvement and this advantage becomes more significant
with increasing data size. Also, k-means-ibd has an I/O
advantage over the other models, because of getting rid of
reading O(n) and writing extra O(2n) data in each iteration.
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Figure 5. Comparison of three models in parallel environment with

different number of nodes with k=100 and data DS-2.

Figure 5 shows the comparison of the proposed models’
computation time over k-means-s with different number of
nodes using MapReduce. In Figure 5, we used DS-2 with its
size simulated up to 400M B and k£ = 100 in this graph. We
simulated the data set in order to see real outputs that were
less influenced by the network overhead. Here it is seen that
k-means-inbd and k-means-ibd have increasing performance



improvement over k-means-s as the number of nodes in the
cluster increase. The main reason for this is, if we have O(z)
improvement in one node and if we distribute the job to m
nodes, we will have O(z*m) improvement, not considering
the network overheads. However, the improvement of k-
means-e is less than k-means-inbd as the number of nodes
increase. Again the reason is k-means-e’s not getting the ad-
vantage of the reducer side improvement. Overall picture is
the same for data set 1, but again, have slight improvements
in k-means-ibd and more improvements in k-means-e and
k-means-inbd. The reason can be explained as follows: k-
means-inbd and k-means-e have mapper improvements, that
is why, they outperform k-means-ibd in small data sizes (in
this particular case, with a data size of 400M B). As we
increase the size of data set, the relative performance of k-
means-ibd increases and after the size threshold value, it
outperforms other algorithms.
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Figure 6. Percentage of points changed in clusters in reduce step for k=5.

Figure 6 shows the percentage of data points that was
processed in the reduce step in both k-means-ibd and
k-means-inbd for £ = 5. This case was chosen as an
example to demonstrate the general concept in a realistic
environment. In that particular graph, it can be observed that
after a certain iteration, all data sets had decreasing number
of operations performed at each following iteration. This was
our main motivation to the improvement achieved on the
second part of the proposed models, namely, processing of
only those points which altered their clusters to compute the
new centroids. Since not all of the points are considered in
finding the new centroid (which is not the case in standard k-
means), after several iterations the number of points that has
changed their cluster decreases drastically. If this graph had
included k-means-s, all lines would be (percentage = 100)
straight lines; that is, no matter which iteration was carried,
all reducers process all points. However, in our proposed
models, as the iteration numbers increase, clusters tend to
converge and the number of operations reduce geometrically.
For simplicity, we show the graph until the 12" iteration,

because after that, points in all the clusters change less than 1
percent until convergence. It is obvious from the graph that,
as the number of iterations increase, our proposed models
demonstrate better efficiency.
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Figure 7. Number of iterations before and after o = 0.15 threshold with
DS-2.

Figure 7 shows the number of iterations needed to satisfy
threshold « and the ones needed to converge. This is
the point where k-means-ibd switches from Algorithm (1)
to Algorithm (3). Since k-means algorithm is greedy, it
converges at the first local minimum. Therefore after a few
steps, the clusters tend to be stable as their centroids tend
to move more slowly. So, with increasing k values, we have
more iterations after threshold. This means that we can take
more advantage on reducer side at each step.

VII. CONCLUSIONS

In this study, an improvement over the standard k-means
clustering algorithm is suggested. In particular, instead of
using the full data set in the centroid updating step of the
algorithm, only the data points which will change their
cluster (by associating themselves to a different cluster
centroid) would be considered. This adjustment on the
algorithm provides a considerable efficiency. We used two
different versions of this algorithm depending on the data
size, cluster size and serial or parallel environment. We
call these algorithms k-means-inbd and k-means-ibd. Fur-
thermore, both serial and parallel implementations were
implemented; MapReduce was used for this purpose.

The results indicate that using this new enhanced algo-
rithm not only provided a considerable performance im-
provement over the classic algorithm but also outperformed
an improved k-means algorithm from the literature in all
tested cases. When the number of the iterations increased,
the amount of work k-means had to perform increases
linearly. Also increasing the number of clusters resulted
in higher number of iterations, hence, it resulted in a
linear increase in workload for k-means. However, since
the amount of work performed by the proposed algorithms
tend to become smaller at each iteration (after the initial



adjustment period), the total amount of work that needed to
be performed compared to k-means kept decreasing.

Similar results were obtained when implementing MapRe-
duce using both datasets. The performance improvement got
better and the results were more significant when the dataset
size became larger.

Even though the results are experimental and it was tested
on two data sets, models showed consistent performance
on all different tested situations. Further analysis might
be required, but the improvement over the classical and
the improved k-means and the advantages of MapReduce
implementations are noteworthy.
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