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Abstract. Modern business intelligence requires data processing not only
across a huge variety of domains but also across different paradigms, such as
relational, stream, and graph models. This variety is a challenge for existing
systems that typically only support a single or few different data models.
Polystores were proposed as a solution for this challenge and received wide
attention both in academia and in industry. These are systems that integrate
different specialized data processing engines to enable fast processing of a
large variety of data models. Yet, there is no standard to assess the perfor-
mance of polystores. The goal of this work is to develop the first benchmark
for polystores. To capture the flexibility of polystores, we focus on high level
features in order to enable an execution of our benchmark suite on a large
set of polystore solutions.

1 Introduction

Modern business questions frequently comprise complex analytical queries with mul-
tiple data types and data models, residing on several data storage and processing
systems. This has led to a large number of domain-specific database engines with
diverse capabilities since it is hard to support all kinds of heterogeneous queries within
a single data processing engine [22]. For these setups, polystores have been proposed
to combine systems that specialize in specific execution and data models.

Similarly, there is a growing community supporting one size might fit all, such
as Apache Spark [27] and Weld [20]. These systems combine numerous analytics
in a single engine to enable generic data representation and benefit from common
intermediate representation for further optimization.

Despite the hype on heterogeneous analytics, whether on polystores or on single
generic-purpose stores, there is no consistent evaluation method. As a result, each
solution presents its own performance measurements. For example, some polystore
solutions are built for a specific use-case [9], while others use TPC queries for their
evaluation [12]. As a result, there is also no common workload, driver, and metrics
for systems performing heterogeneous analytics. This makes it hard for a user to
compare systems with different evaluation strategies. Although we concentrate on
polystore evaluations in this paper, we also perform a thorough comparison between
polystore and single, general-purpose engine.

We propose PolyBench, the first benchmark for heterogeneous analytics systems,
especially for polystores, providing a complete evaluation environment. Our aim is
to provide a benchmark suite with evaluation metrics and workloads, which will
eventually lead to better baselines. Currently, a general accepted baseline for polystore
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evaluation is a single, general-purpose engine. The outcome of previous performance
comparisons between polystores and single store engines is that polystores outperform
single stores [7, 21]. However, as we show in this paper, this is not always the case. We
evaluate the trade-offs between polystores and single-stores with various workloads.

PolyBench features a driver which benchmarks polystores with three main use-
cases. We also provide a set of metrics which are specific to polystores. Our use-cases
operate with structured, semi-structured, and unstructured data types and support
relational, stream, array, and graph data processing paradigms. Our benchmark
solution is not tied to a specific polystore solution, rather, it is generic and high level
enough to be applied to any polystore.

We list the main contributions of this paper below:

– We propose PolyBench, the first polystore benchmark. Our benchmark suite
consists of three main use-cases and two test scenarios. We provide a set of
metrics for PolyBench, to conduct a thorough analysis.

– The main idea behind polystores is to overcome performance bottlenecks of
single general-purpose stores. We conduct an analysis of this idea and compare
polystores and single general-purpose stores.

– We conduct an extensive experimental analysis. We evaluate the systems under
test with different parameters and combinations of parameters, provided by our
benchmark driver.

We structure the rest of the paper as follows. We provide background information
about the systems under test in Section 2. In Section 3, we survey related work. We
explain use cases and our data model in Section 4. Section 5 describes test scenarios
we adopt in PolyBench. We demonstrate our experimental analysis in Section 6. In
Section 7, we discuss the results of experiments and analyze possible directions to
improve our benchmark as future work. Finally, we conclude in Section 8.

2 Background

In this section, we give brief definitions of terms we utilize in this paper.
A polystore is union of different specialized stores, possibly with distinct lan-

guage and execution semantics, supporting wide range of data types and analytics.
We adopt the term polystore from BigDAWG [7]; however, our definition of polystore
is more general to cover wide range of solutions. We utilize the term query for single
stores and use case with polystores.

A member-store is a fundamental unit of a polystore, specialized and optimized
for specific workloads. A member-store contributes most of its features to overall
feature set of a polystore. As a result, a polystore supports a set of features and
capabilities of its underlying member-stores. Once a user executes a use case to a
polystore, a polystore optimizer splits the use case into subqueries, each of which di-
rectly addresses a particular member-store. A subquery might also contain embedded
invocations to specified member-store’s native query interface.

We differentiate three main member-stores. The first one is source member-store. A
source member-store is a member-store from which a polystore ingests input data
from outside world. The second one is sink member-store. A sink member-store
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is a member-store which reside in the last ring of the overall pipeline and provide
the output of a given use case to the user. The third type is relay member-stores. A
relay member-store is a member-store, except sink member-store, which ingests
its input data from other member-stores.

In this paper, we consider a polystore as a blackbox and tune it only with high
level APIs. For example, a connection between a member-store and a polystore,
whether it is mediator-wrapper or grouped islands architecture, is a system-specific
design decision and out of the scope of this paper.

A single store is a general-purpose store or engine, which might or might not be
a specialized in one or many workloads, supporting various analytics. We adopt the
term single store to differentiate it from member-stores. In our experimental setup
a single store supports all required features to execute our workloads. This enables
us to conduct a thorough analysis between single store and polystore.

3 Related Work

There is a large body of work on polystores, each of which features a unique eval-
uation technique. In this section, we give an overview of existing polystore evaluation
techniques. Below we categorize related works based on their main focus.

Language. Language design is an important component of polystores. It hides
complex systems programming from users. Bondiombouy et al. propose a functional
SQL-like query language that integrates data retrieved from different data stores
[4]. Kolev et al. propose a similar SQL-like approach [14]. The authors provide
specific queries for an evaluation of their solution. However, the member-store for
data placement and query execution is hardcoded in the queries. We, on the other
hand, formulate our use cases for polystores to be transparent both in terms of data
placement and engine selection.

Tools. To enable data transparency between member-stores of a polystore,
efficient data transfer and transformations are required. Dziedzic et al. analyze data
migration between a diverse set of databases, including PostgreSQL, SciDB, S-Store,
and Accumulo [8]. Pipegen features a similar approach automatically generating data
pipes between DBMSs [11]. The authors of both papers evaluate their solutions with
data migration-/transformation-specific use cases. These benchmarks are difficult
to generalize for polystore evaluation as they are not high level enough to cover a
polystore benchmark.

Optimizer. Workflow optimization is important to efficiently place and move
data in polystores. Chen et al. focus on the optimization of the amount of data
movement [6, 25]. The main limitation of this work is that data placement and
member-stores are tightly coupled. Our benchmark on the other hand, has no prior
assumption on data placement or migration. Because PolyBench considers systems
under test as blackbox, our benchmark leaves all optimization decisions to the op-
timizer of a system under test. Jovanovic et al. soften the data placement condition
in member-stores and develop an algorithm to choose member-stores [12]. The au-
thors adopt TPC-H and TPC-DS queries for evaluation. MISO also adopts a similar
evaluation method [15]. The main limitation is that TPC queries are not designed
for heterogeneous analytics workloads.
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Specialized benchmarks. There are also some works focusing on polystore
performance analysis. However, these typically consider only a specific polystore and
analyze its capabilities. Kolev et al. analyze the polystore built on the CloudMdsQL
language [14] and conduct experiments on the main features of relational and NoSQL
engines [13]. Yu et al. evaluate the performance of BigDAWG [7] with MySQL and
Vertica member-stores [26]. The authors adapt TPC-H queries for their evaluation.
The main limitation of previous work is that the benchmark design is specific to the
proposed solution. We, on the other hand, propose a generic benchmark suite that
can be applied to any polystore solution.

Currently, BigDAWG executes workloads comprising diverse queries by identi-
fying sweet spots in member-stores. However, to effectively identify strengths and
weaknesses of query processing capabilities of member-stores, a formalization the
performance characteristics is required. According to one of the authors of BigDAWG,
Jennie Rogers, an important step to solve this problem is to find minimal set of
evaluation use cases [2]. For a better performance, monitoring framework should feed
the evaluation results to a polystore optimizer. Our work is the first initiative to solve
the more general issue incorporating a diverse set of polystore solutions.

Lu et al. propose their vision to benchmark polystores concentrating on data
models [19, 17, 18]. The main limitation of this proposal is that data model conversion
and transformation is only one facet of general polystore evaluation. Furthermore,
to ensure black-box evaluation, the data models and conversion between them should
be transparent to the benchmark driver. Our benchmark suite, on the other hand,
performs analysis in with high level APIs and leave all low-level details to system under
test. BigBench is an industry standard benchmark for big data analytics [10]. The focus
of this benchmark is benchmarking big data processing systems.We, on the other hand,
concentrate on benchmarking polystores, combination of big data processing systems.

In previous works many different evaluation methods were proposed, each of
which is specific to either one polystore instance or one implementation aspect. Our
work is the first to propose a generic, holistic polystore benchmark.

4 Data Model and Use Case

PolyBench is an application level benchmark and simulates a banking business
model. We choose banking, since it features heterogeneous analytics and data types.
PolyBench’s data set comprises structured, semi-structured, and unstructured parts.

4.1 Data Model

Relational. From the Figure 1, 1 describes the list of bank customers. 2 is the

list of people globally blacklisted. 3 is the customer transactions table.
Stream. The main characteristic of the stream data model is that data is

continuously arriving, possibly infinitely. There is no standard streaming data format,
it can be structured, semi-structured, and unstructured.

In Figure 1 4 is a stream that represents online operations. This is necessary
for analyzing and debugging potential problems in real-time. One example would be
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Fig. 1: PolyBench data model.

real-time fraud detection. Another example is monitoring exchange operations and
updating exchange rates based on the current assets of the bank.

Array. While traditional DBMS platforms organize data in tables, array
databases store data in array data model. The array model can have several di-
mensions, resulting in n-dimensional matrices. An array data model should be able
to handle various scenarios, such as dense data (images), time series data, sparse
arrays, and etc. The main goal is to fetch required data with few disk accesses by
adjusting the tiling of the array to the access patterns. An array data model also tries
to maintain a spatial proximity on disk, reducing the disk I/O during subsetting.

In Figure 1 5 shows our array data. We store 3-dimensional (customer - balance -
time) data in an array format, which stores the balance of a customer at a given time.

Graph. Similar to stream data model, there is no unified way to represent graph

data. We use two graph datasets for graph data. 6 represents the relationships
between customers. This is useful for calculating credit scores of customers. If a
customer has a financial connection with someone, that person’s name can appear on
customer credit report. As a result, when a bank looks to the customer credit report,
it also checks people the customer linked with. Thus, having financial connections

with people with low credit score can affect customer credit score. 7 shows the

RDF data extracted from 6 and 8 .
Text. Text data is an unstructured information that lacks a pre-defined data

model. 8 includes comments or public tweets about a bank. We use publicly available
customer review data set [16].

As we can see, the overall input data consists of different data models, each of
which with a separate homogeneous data set. Throughout the paper we utilize
the term heterogeneous input for the union of several homogeneous inputs to
a system under test. For example, a heterogeneous input may consist of a set of
relational, stream, and array homogeneous inputs.

4.2 Use Cases

The amount of data stored by banks is rapidly increasing triggering banks to push
new data processing technologies into their production environment [23]. To survive
in a competitive world, it is necessary to adopt big data analytics as part of their core
data processing strategy Apart from the volume, the diversity of data also increases,
resulting in heterogeneous data and processing models. Inspired by this trend, we
provide three use cases in Figures 2, 3 and 4.
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INSERT INTO typed dep VALUES (
CONVERT INTO RDF (
SELECT ∗
FROM Customer c
WHERE c . updated > arg as u)
UNION
CONVERT INTO RDF (
SELECT ∗
FROM People p
WHERE p IN u)
UNION
CONVERT INTO RDF (
SELECT o p i n i o n t e x t
FROM Opinion o
WHERE o . t s > arg )
)

Fig. 2: Use Case 1

SELECT ∗
FROM (
SELECT customer . userID
FROM customer
WHERE cutomer . work = null ) AS c ,
(SELECT userID
FROM c b t s
WHERE c b t s . balance > arg1
AND c b t s . year=arg2 ) AS c2 ,

(SELECT p . userID
FROM people p
WHERE p sp b l a c k l i s t e d < arg3 )
AS p

WHERE p . userID = c . userID
AND c . userID=c2 . userID

Fig. 3: Use Case 2

Bankmulti-model data integration. In this use case we combine data residing

in different sources to provide users a unified view. We integrate 1 , 6 , and 8 into

7 , constructing a clear high level abstraction. The use case utilizes RDF as a target
data type. At the sink operator of each engine, except the sink member-store, we put
an additional operator, CONVERT INTO RDF. The operator converts relational
data (Customer table) to RDF (id - columnName - columnValue). The conversion of
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SELECT ∗
FROM customer c , t r a n s a c t i o n s t , c b t s ,
(SELECT ∗
FROM monitor m
WHERE m. userID IN b l a c k l i s t . userID )
as f raud
WHERE c . userID = fraud . userID
AND t . userID = fraud . userID
AND f raud . userID = c b t s . userID
AND c b t s . t s with in param time

Fig. 4: Use Case 3

graph data model is in (sourcePersonID - relationName - destPersonID) format. For
the text data, we extract (object - predicate - subject) patterns and construct RDF3.

Customer background check. In this use case we check customer background
to detect suspicious customers for further investigation. Schufa4 is one example for
customer background check. In our use case, if a customer is unemployed but has
last year overall balance above some threshold and has very few connections to
other people (for people having accounts in offshore banks) or some connections to
blacklisted people, then the use case takes them into further consideration.

Continuous queries: fraud detection. In many financial applications, a data
processing system may consume data in the form of continuous data streams, rather
than finite stored data set. In this use case we consume and process realtime data
and enrich it with other data sources. To be more precise, for every streaming tuple

from 4 we check if the tuple ID is blacklisted. If so, we retrieve all transactions and
balance information for the last week for the particular user for further investigation.

Based on the physical query execution plan of a polystore we categorize our use
cases into two groups: dependent and independent polystore use cases. A dependent
polystore use case is a use case, which consists of at least one relay member-store
as a result of polystore deployment plan. An independent polystore use case is
a use case which does not have any relay member-store as a result of a polystore
deployment plan.

5 Benchmark Design

5.1 Metrics

Metrics are standard units to measure the performance of a system under test. Previous
works generally adopt runtime as main metric for polystores. Although this is a proper
metric for a polystore evaluation, it is not enough to get a good overview of polystore
performance. Below we provide a set of metrics that we adopt for our benchmark.

3 We partially benefitted from the library https://github.com/codemaniac/sopex
4 https://www.schufa.de
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Runtime. We use the term runtime for test scenarios consisting of batch use
cases. Runtime is the time span between the polystore’s start time, earliest start time of
the member-stores, and end time, the latest end-time of member-stores, for processing
the given use case. Thus, runtime is associated with the whole polystore system.

We use the term latency for interactive test scenarios consisting of continuous
and batch use cases. We compute latency metric per tuple. The latency is the time
span between tuple entering the source member-store and the related result emission
time from sink member-store.

Individual runtime. Although we are interested mainly in the overall runtime
of a use case, to perform a thorough analysis it is important to measure individual
runtimes of subqueries running in different member-stores. Individual runtime is the
runtime of each member-store in a polystore. We adopt the term individual latency
for use cases containing continuous test scenarios.

Idle time. The above metrics are related to the time span in which a polystore
or a member-store performs data processing. However, member-stores might stay idle
for some use cases. The idle time is a time span in which a member-store does not
perform any computation. The reason is mainly a blocking upstream member-store,
especially in dependent polystore use cases. Note that only elected member-stores,
which are selected by polystore query optimizer for executing a given use case, are
considered for this metric.

Load. In PolyBench the load is defined by the size of the heterogeneous input
data. We adopt 10GB, 50GB, and 100GB heterogeneous input data each of which
consists of different homogeneous input data sizes.

5.2 Test Scenarios

Our test scenarios categorize the use cases based on their mode, which can be i)
one-shot scenarios, ii) continuous scenarios. We propose two main test scenarios for
PolyBench. In our experiments, we analyze each test scenario separately and together.
Because there are many parameters contributing to the performance of a polystore,
we design our test scenarios to measure the best and the worst performance after
parameter tuning.

Resource distribution. The first test scenario is resource distribution among
member-stores. Member-stores reside in the left set and resources are in the right set.
There is a many-to-many relation between the two sets. In this test scenario, we evalu-
ate the result of different mapping strategies from member-stores set to resources set.

The resource distribution scenario receives the amount of overall resources as
an input. In our case the resource includes nodes in a cluster, memory, and CPU.
The test scenario assigns each resource to a particular member-store and ensures all
resources are utilized by member-stores of a polystore. For the single store case, it
assigns all resources to the resource manager of the single store engine.

One usage of this test scenario is scale-out/in scenarios. For example, a user has
some information about the input data. She knows with the existing resources it is
inefficient to process all of input data. So, once a user decides to add new resources,
because of the performance issues, a polystore should distribute new resources among
member-stores in an optimal way.
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Load distribution. The second test scenario is load distribution among member-
stores. There are two main factors contributing to the load of member-stores, being
an input data size and assigned subqueries. Suppose a user submits a use case to a
polystore. The polystore optimizer divides the use case to several subqueries, based on
some meta-data and assigns subqueries to member-stores. As a result of the assignment
if the performance of a particular member-store is a bottleneck to the whole use case,
then there are several solutions. One option is to share the subquery with another
member-store, which also supports all necessary features to execute the subquery.
Another option is to recompile the use case and reassign subqueries to member-stores.

Because subquery assignment to member-stores is an internal process of a system
under test and because we treat system under test as a blackbox, we concentrate on
the second factor contributing the load distribution test scenario, being an input data
size. Because the heterogeneous input consists of different homogeneous inputs, the
idea of this test scenario is to tune the size of homogeneous inputs, find different ratio
of homogeneous input sizes and ensure the size of heterogeneous input data is constant.

6 Experiments

6.1 Setup

We conduct experiments with the polystore BigDAWG v0.1 and single general purpose
engine Apache Spark v2.3.0. We use Apache Giraph v1.2.0 [3] for workloads containing
graph processing. We setup our experiments on a shared-nothing cluster. Our cluster
consists of 20 nodes. Each node is equipped with 2.40GHz Intel(R) Xeon(R) CPU with
16 cores. System clocks in all machines throughout the cluster are synchronized via a lo-
cal NTP server. Unless stated otherwise, we deploy all member-stores of a polystore to
different cluster nodes. We utilize 10GB, 50GB, and 100GB datasets for benchmarking.
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Fig. 5: Effect of tuning homogeneous data sizes with 10GB, 50GB, and 100GB
heterogeneous input data size. PB stands for BigDAWG performance with tuned
data distribution, SB stands for Spark performance with tuned data distribution (the
same distribution as PB), PW stands for the worst BigDAWG performance, and SW
means Spark performance with homogeneous input data same distribution as PW.
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6.2 Use Case 1

We convert each tuple to RDF format in the sink operator of member-stores. Analyz-
ing the deployment plan of BigDAWG we conclude that the use case belongs to the
dependent polystore queries. To be more precise, the result of select operation from
the People table depends on the output of the select operation from the Customer
table. As a result, the latter is a blocking operation for the former.

As we discussed in Section 5, the input data distribution contributes to the
member-store load. In the following experiment, we keep the deployment configura-
tions of BigDAWG constant and change the size/ratio of homogeneous input data
keeping the overall heterogeneous input data size constant. The idea of the use case
is that an enterprise might lack prior knowledge of the statistics of input data sets.

Figure 5 shows the effect of different homogeneous input data sizes, keeping the het-
erogeneous data size constant, for systems under test.We consider two cases: i) the best
case - input data distribution is tuned according to deployment of member-stores and
ii) the worst case - the distribution of input data and member-stores deployment are
uncorrelated. In the first case, we tune the homogeneous input data sizes to be executed
by different member-stores to maximize to overall performance of BigDAWG. In the
second case, we show the worst performance of BigDAWG. In both experiments we also
evaluate the single general purpose store. We observe that once we tune the ratio of ho-
mogeneous inputs, then BigDAWG performs better than Spark, because each member-
store is specialized for special workloads and we provide such a particular workload.

We can see in Figure 5 that Spark is more robust to the changes in input data
set, than BigDAWG. The reason is that Spark utilizes all dedicated resources, as
opposed to a member-store which utilizes only a portion of the resources dedicated
to BigDAWG. As a result, a member-store is more prone to become a bottleneck (to
the whole polystore) than Spark. Indeed, if there are more bottleneck member-stores,
then the overall performance of a polystore degrades significantly.

We also observe a serious performance degradation for BigDAWG once we play
with the amount of homogeneous input data. Moreover, with increasing heterogeneous
data size, the gap between the best and the worst case increases as well. One reason
behind this behavior is scheduling. In BigDAWG a member-store can belong to only
one island, although it might feature several characteristics of different islands. As
a result, the BigDAWG scheduler is unable to share a subquery to member-stores
residing in different islands. This causes limitations when the size of one homogeneous
input data is larger than others.

In Spark, data sources reside in the upstream of the source operator. The source
operators receive data from external data sources while other operators pull input
data from upstream operators. When there is a blocking operation in the upstream
operator, the global scheduler of Spark, DAGScheduler, assigns a non-blocking task to
downstream task schedulers. The global scheduler might also eliminate downstream
operator for some time allocating more resources to blocking upstream operator.

Similarly, in BigDAWG source member-stores receive input from external data
sources and other member-stores obtain input data from upstream member-stores.
The main limitation is that BigDAWG scheduler is not as dynamic as Spark scheduler.
As a result, especially for dependent polystore use cases, an upstream member-store
can easily become a bottleneck. That is, the result of the selection query in People
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table depends on the result of the selection query from Customer table. As a result,
member-store associated with the former table stays idle until the member-store linked
with the latter table finishes. The problem increases with larger input data sizes.

Another reason behind poor performance, we observe in Figure 5, of BigDAWG
with non-tuned data distribution is data partitioning. For a single system selecting
an optimal data partitioning is a non-trivial task [24]. Performing so for a polystore is
more challenging task as the task includes i) partitioning data among member-stores
and ii) partitioning data within separate member-stores.

BigDAWG setup’s transfer and load times contribute significantly to the overall
use case runtime. The impact increases with increasing input data size. The main rea-
son is that efficient data transfer strategies between different member-stores requires
n-to-m connections between one member-store with n instances and another one with
m instances. This is non-trivial as it requires changing an engine’s communication
internals and can cause synchronization issues. In Spark, on the other hand, these
details are automatically handled transparent to a user.
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Fig. 6: Effect of scaling out in Spark and BigDAWG with 4, 8, and 16-node con-
figurations. PB stands for the best performance of scaling out BigDAWG, SS means
scaling out Spark, and PW mean the worst performance for scaling out BigDAWG.

Figure 6 shows the main idea behind scaling out in BigDAWG and Spark envi-
ronment. In this case, we fix both heterogeneous and homogeneous data size and
consider the number nodes in cluster as a variable. As a result, a user should be able
to benefit from the performance of the systems under test with adding more resources.
In this case we accept heterogeneous and homogeneous data as a constant variable.

We can observe that once a user has knowledge about the input data domain and
engine characteristics of the member-stores, then tuning BigDAWG for scaling out re-
sults with the best performance compared to Spark. Engine characteristics of member-
stores refers to an estimation of each member-store performance with more resources.

We see a consistent scale-out performance for Spark. As we add more nodes
to the cluster, the duration of computation improves. Although there are several
parameters to tune manually such as garbage collection, serialized RDD storage, level
of parallelism, and memory usage of reduce tasks, Spark performs the main network
and I/O tuning transparent to the user. From this perspective, the required systems
expertise is less for tuning the single engine for scaling out.

We note that the worst case scaling out scenario for BigDAWG causes perfor-
mance problems. Worst case scaling out occurs when we increase the amount of
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resources to a set of member-stores without having enough information about the
characteristics of member-stores. A lightweight monitoring system, which BigDAWG
currently lacks, might be a solution for this problem, where the framework monitors
the performance of operators inside member-stores and member-stores as a whole
and feed the information to the optimizer which assigns available resources among
member-stores and among instances of particular member-store in an optimal way.

Although benchmarking scenarios individually is important, testing the perfor-
mance of systems under test with combinations of different test scenarios gives us
more insights. In Figure 7, we benchmark the performance of the systems under test
with combination of both test scenarios: resource distribution and load distribution.
The scenario occurs when a user is not an expert in BigDAWG and there is a
little knowledge about input data. The result is that the performance gap between
BigDAWG and Spark increases more than in the above experiments.
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Fig. 7: Effect of scaling with different homogeneous data distribution for BigDAWG
and Spark. PB stands for the best performance for BigDAWG. PW stands for
the worst BigDAWG performance. SW stands for the performance of Spark. The
heterogeneous input data size is constant.

6.3 Use Case 2

From the deployment plan of BigDAWG, we note that Use Case 2 is an independent
polystore use case. BigDAWG divides the use case into sub-queries, submits to the
relevant member-stores and merges once the results of all member-stores are ready.
Independent polystore use cases spend less time for data transformation (from one
member-store format to another) and reduce the amount of idle stay waiting for an
upstream member-store.

We analyze the load distribution test scenario with BigDAWG and compare it
with Spark. Figure 8 shows the results of engine load for Use Case 2. Idle time is
the sum of periods in which member-stores stay idle. For the equal load in the figure,
we configure member-stores such that the overall idle time is minimized. For skewed
load, on the other hand, we arrange the distribution of the load to be random and
to be different from each other at least 20%.

We observe that with a shared load, BigDAWG performs better than Spark. In
this experiment, we measure the performance of a member-store with different loads
and select a load combination which ensures the best performance for the whole
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Fig. 8: Effect of engine load. PE refers to BigDAWGwith equal load for member-stores,
PS refers to BigDAWG with skewed load, SE refers to Spark with same load as PE,
and SS refers to the performance of Spark with the same load as PS. Legends: S
refers to runtime of Spark, IR-n refers to the individual runtime of nth member-store,
and Idle refers to the overall idle time of BigDAWG.

polystore. The main reason behind the better performance of BigDAWG with shared
load is that each member-store is specialized in assigned workload, resulting in overall
improved performance.

We also perform experiment with skewed load. As a result, we can observe sig-
nificantly increased idle times. Moreover, as the data size increases, the impact of
idle time increases. We also observe a correlation between runtime of an individual
member-stores and idle time.

We can also see that Spark is less susceptible to skewed load than BigDAWG.
The reason is better scheduling and adaptive resource allocation in Spark. Dynamic
resource allocation and scheduling is simpler in single engine environment. As a
result, idle time duration in a cluster and the impact of skew is minimized in Spark.
To avoid data skew, Spark, adopts TreeReduce and TreeAggregate methods and
new aggregation communication pattern based on multi-level aggregation trees. At
the beginning of the job, Spark’s DAGScheduler assigns task schedulers to combine
partial aggregates on local executors. Then, Spark shuffles the locally aggregated
data to pre-scheduled reducers. For BigDAWG case, on the other hand, the optimizer
lacks similar features, which in turn results in relatively poor performance.
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Fig. 9: Effect of engine selectivity for BigDAWG and Spark. PL stands for BigDAWG
with low selective subqueries, PH means BigDAWG with high selective subqueries,
SL stands for Spark with low selective operators, and SH means Spark with high
selective operators.
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Similarly, in Figure 9 we analyze the effect of subquery selectivity in BigDAWG
and operator selectivity in Spark. We define low selectivity being s≤0.2 and high
selectivity being s≥0.8.

6.4 Use Case 3
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Fig. 10: Effect of running continuous queries on BigDAWG and Spark. PS latency
stands for the latency of BigDAWG , SS latency means the latency of Spark, MS-1
is S-Store, MS-2 is PostgreSQL and MS-3 is SciDB.

Figure 10 shows the latency of input tuples. We can observe the skew in the latency
distribution among member-stores. For example, the streaming engine in BigDAWG
has the lowest latency. Because relational and array databases in our polystore are
not optimized for streaming workloads, we observe a relatively high latency for the
particular member-stores. Another reason for this behavior is synchronization and
scheduling overhead among member-stores. For this type of queries BigDAWG would
have benefited from caching feature among member-stores. Spark, on the other hand,
provides automatic caching of frequently used RDDs.

We notice that the input/output semantics of member-stores is prone to be a
bottleneck, especially with workloads including continuous queries. For example, the
streaming member-store adopts a pull-based approach to ingest the input data and
push based approach to output. It is not desirable to accumulate data inside the
engine because once an operator state gets bigger, the performance degrades. For
relational databases the input/output semantics are more relaxed. Depending on the
size of the output, the system can stream or save the data in a temporary table for
later use. Because backpressure mechanism is not available in polystores, adding flow
controls to each engine, causes an additional latency because of the synchronization
overhead among member-stores.

7 Discussion and Future Work

In this section, we summarize the findings of our experimental results. There is a
need for better query optimizers and automation tools for polystores. Although this
is not a new area in database research, existing optimizers work best for a specific
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Fig. 11: Data transfer strategies for polystore and single store.

set of workloads. The overhead and required knowledge for tuning polystores is con-
siderably higher than single store engines. Tuning a system is important to optimize
and homogenize the performance. Although there is a large amount of research on
self-tuning systems [5], performing so for a single-store system is still non-trivial.
However, having information about input data can ease the work of database admin
significantly. Tuning polystores for a given workload is much harder problem than
tuning a single store systems. Tuning a polystore includes tuning all member-stores
individually. Moreover, once there is a correlation among member-store workloads,
as we saw in our experiments, tuning a polystore becomes even more complicated.
For example, if the query involves interchanging the data between member-stores,
the exact tuning decision is non-trivial at compile time.

A two-level scheduler (local for member-store and global for polystore) leads to
non-negligible idle times. Relaxing the border between different layers of schedulers
would increase polystore performance considerably.

In our experiments, we notice data representation and transfer to be a significant
issue. While some works [11, 20] use a single data representation [1], others have
multiple data representation [7]. The same is true for data transfer. Especially for
continuous queries data transfer layers can easily become a bottleneck. The reason
is that backpressure is non-trivial to implement for polystores, which would lead
to gathering massive amounts of data in data transfer layer. Figure 11 shows three
possible data transfer strategies for polystores and the data transfer for a single store.
Although all different strategies have their own advantages and limitations, selecting
the best option for the given workload is essential to improve the performance of
polystores. BigDAWG, for example, supports the transfer strategies depicted in
Figures 11a and 11b; however, these are hardcoded in the implementation and, thus,
are not considered as a variable for an optimizer.

8 Conclusion

Polystores are designed to overcome the limitations of single general purpose data
stores. To fill various gaps in data processing, there is an increasing number of poly-
stores, with member-stores featuring different data models and execution models. This
makes the solutions challenging to benchmark. In this paper we present PolyBench,
the first benchmark for polystores. Our benchmark is generic and high level to support
wide range of existing polystore solutions. We conduct an experimental analysis on
a single store and a polystore and provide a comparative analysis. Our key finding
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is that, although polystores are a key solution for most enterprise use cases, there are
significant limitations for evaluation in previous works. Firstly, polystores perform
better with tuned load and resource distribution. Secondly, current polystore designs
are not compatible with continuous queries. We identify the main reasons for the
above behaviours as lack of advanced optimizer, scheduler, and data transfer layer.

Considering that this work proposes the first benchmark for polystores, there
is still a research to be carried for a complete and standard benchmark. A useful
extension to our benchmark would be to support specialized polystores. Examples are
graph based polystores and ML based polystores. An improvement would be to add
workloads with all possible combinations of the above. An extension for measuring
individual components would be to support benchmarking polystore tools, such as
data transfer and data representation tools. Moreover, important metrics such as
ease of use, maintainability, high availability, and performance robustness are key in
production environment, which is part of the future work.
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