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Synonyms

Stream performance evaluation

Definitions

Stream benchmarks deal with per-
formance evaluation techniques and
define related metrics for stream data
processing systems.

Historical background

Lee et al (1997) initiated one of the first
works in the related area, MediaBench,
by evaluating and synthesizing multime-
dia and communications systems. Abadi
et al (2003) and Motwani et al (2003) pi-
oneered one of the first stream data pro-
cessing systems, Aurora and STREAM
respectively. The need to compare the

performance characteristics of streaming
systems relative to each other and to al-
ternative (e.g., Relational Database) sys-
tems endorsed the development of Lin-
ear Road Benchmark, Arasu et al (2004).

Foundations

Stream data processing is key when the
large volumes of input data has to be
processed fast to quickly adapt and react
to changes. Therefore, stream data pro-
cessing has gained significant attention.

The main intuition behind stream
benchmarks is to define a standard to
compare streaming systems, which has
different characteristics, in a various
use-cases. Stream benchmarks simulate
an environment with different work-
loads and analyze the behavior of the
systems to be tested. The more similar
the benchmark to the real production
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environment, the more realistic and
valuable it is.

In the high level, stream benchmark
framework consists of two main com-
ponents: system under test and driver.
Driver is responsible for simulating the
production environment w.r.t. a given
use-case. System under test is actual
tested streaming system which can be
out-of-the-box or tuned.

Accurately representing the system
under test is important when designing
benchmarks. Schroeder et al (2006)
categorize benchmarks into closed, open
and partly-open models. In a closed
system model, the input arrivals are
are triggered after the completion of
the previous input processing and some
thinking time delay. In an open system
model, on the other hand, new input
arrivals and the completion of the previ-
ous input processing are independent. In
a partly-open system model, we specify
the settings for which partly-open model
behaves like a closed or an open model.

Below, we categorize existing stream
benchmarks in literature. Firstly, we talk
about the main metrics in stream bench-
marks and their definitions. Secondly,
we analyze stream benchmarks which
concentrate on specific features such as
fault tolerance and state management.
Lastly, we analyze stream benchmarks
built for specific industrial use-cases.

Metrics

Main metrics for stream benchmarks are
latency and throughput. Achieving high
throughput while preserving low latency
is the main goal for streaming systems.

Latency

Defining a standard latency metric
definition for streaming systems is a
challenging task. One reason is signi-
ficant architectural and computational
differences among stream data pro-
cessing engines. Another reason is
calculating latency for stateful operators
in non-trivial.

Chintapalli et al (2016a) use Redis
for stateful computations as part of the
system under test. The authors calculate
the event-time latency by subtracting
the window start time and duration time
from the last updated time of a particular
input record. Perera et al (2016) propose
reproducible benchmarks for Apache
Spark and Flink on public clouds.
The authors does not use a standard
latency definition, as, in this case, the
latency measurement is experiment and
application specific. Lu et al (2014)
propose a new stream benchmark by
separating the data generator and system
under test. The authors put a mediator
layer between the two components.
They define latency as an average time
span from the arrival of a record till
the end of processing of the record.
Qian et al (2016) also adopted a similar
approach. Karimov et al (2018) develop
stream benchmark framework that
overcome overhead of a mediator layer.
The authors show how processing-time
latency might mislead when compared
with event-time latency.

Throughput

Throughput is another essential metric
for stream data processing systems.
Similar to latency, measuring and defi-
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ning a standard throughput metric for all
streaming systems is non-trivial.

Chintapalli et al (2016a) separate
the data generator and system under
test with an intermediate layer between
them. The authors calculate the through-
put by configuring the speed of data
generator for a specific workload. Lopez
et al (2016a), on the other hand, rely on
Kafka’s sampled throughput rates. Lu
et al (2014) measure the overall system
under test throughput and throughput
per node. The authors define overall
throughput metric by count (average
count of records per second) and size
(average data size in terms of bytes
processed per second). Shukla and
Simmhan (2016) define throughput as
the rate of output tuples emitted from
the output operators in a unit time.
Dayarathna and Suzumura (2013) define
job throughput in two ways. First, the
authors measure the time required to
process a specific amount of events.
Second, the authors measure the number
of tuples processed in a given amount
of time. The throughput computation is
performed based on both time periods.
Samosir et al (2016), on the other hand,
adopt the throughput metric used in
batch processing systems. Karimov
et al (2018) propose maximum sustain-
able throughput throughout the whole
experiment.

Benchmarking the energy consump-
tion of stream data processing engines
is another important aspect of stream
benchmarks. Dayarathna et al (2017)
adopt Linear Road benchmark for
testing the energy efficiency of S4,
Storm, ActiveMQ, Esper, Kafka, and
Spark Streaming. The key finding of this
work is that better power consumption
behaviors in the context of data stream
processing systems can be achieved

by setting tuple sizes to be moderate
and scheduling plans to have balanced
system overhead.

Features

Besides focusing on metrics computa-
tions, stream benchmarks also concen-
trate on specific features of stream data
processing engines.

Fault tolerance

Lopez et al (2016a) study stream-
ing systems’ tolerance to failures by
analyzing the system behavior after
detecting the failure. The system be-
havior includes the message losses
and latency/throughput change during
node failure. Gradvohl et al (2014)
categorize fault tolerance behavior
in stream data processing systems
into replication components, upstream
backup, checkpoint, and recovery
and analyze the system utilization
of these strategies. Mohamed et al
(2017) propose a driver which allows
programmatic specification of complex
fault scenarios. Chauhan et al (2012)
measure the systems’ tolerance to faults
by i) measuring the number of events
handled and ii) checking the number of
events that were missed when nodes go
down in cluster. Qian et al (2016) adopt
Identity workload and consider only one
node failure at a time. The benchmark
suite collects the performance metrics in
node-failure workload and compares it
with non-faulty workload.
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State management

Linear Road benchmark, Arasu et al
(2004), Jain et al (2006), consists of
continuous queries which update oper-
ator state by processing the incoming
stream. Kipf et al (2017) analyze the
limitation of efficiently exposing the
state to analytical queries for stream
data processing systems. The authors
compare main-memory databases and
streaming engines and propose new
methods to advance state management
in streaming systems.

Key applications

In this section we categorize stream
benchmarks based on different industrial
use-cases.

Data mining. Zhang et al (2012) and
Le-Phuoc et al (2012) are the pioneers
to propose SRBench and LSBench, the
first benchmarks for RDF streaming
and Linked Stream Data processing.
The authors adopt wide range of queries
including simple graph pattern matching
queries and the ones with complex
reasoning tasks. DellAglio et al (2013)
propose CSRBench, an extension for
SRBench. The authors overcome the
main shortcoming of SRBench and LS-
Bench, which is inability to assess the
correctness of query evaluation results,
by analyzing the operational semantics
of the particular processors. Ali et al
(2015) address another limitation of
SRBench and LSBench, addressing the
dynamic application requirements and
data-dependent properties. The authors
propose the workloads which include
fluctuating streaming rates during query
execution and changing the application

requirements over a some time duration.
Implementing, modeling and evaluating
the provisioning algorithms for stream
processing applications is another re-
lated work, in which authors propose
VISP Testbed Hochreiner (2017). The
toolkit provides a common runtime for
stream processing applications.

E-commerce. Teng et al (2017)
analyze streaming systems behavior
in e-commerce scenarios. The authors
provide a data generator, as part of the
benchmark suite, with certain user mod-
els, which adopt a certain user habits
in e-commerce platforms. Tucker et al
(2008) propose NEXMark, an extension
of XMark Schmidt et al (2001), based
on online auction system. Currently,
NEXMark is used as a benchmark suite
in Apache Beam Buzzwords (2017).

IoT. Shukla and Simmhan (2016)
develop a benchmark suite for stream-
ing systems for IoT applications. The
authors classify 13 common IoT tasks
with functional categories. Moreover,
the benchmark suite provides two
IoT applications being statistical sum-
marization and predictive analytics.
CityBench is the benchmark to evaluate
RDF stream processing systems in IoT
scenarios Ali et al (2015). The authors
use traffic vehicles, parking, weather,
pollution, cultural, and library events,
with changing event rates and playback
speeds as part of the data generator.
Shukla et al (2017) extend the existing
stream benchmarks in IoT proposing
RIoTBench. The benchmark includes
27 common IoT tasks. Moreover, the
authors propose four IoT applica-
tion benchmarks composed from the
proposed tasks.

Network. Nazhandali et al (2005)
propose stream benchmark for sensor
network systems, suitable for sensor
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processors. The authors propose new
metrics being EPB (Energy Per Bundle)
and CFP (Composition Footprint) to
evaluate and compare systems under
test. Lopez et al (2016b) analyze the
performance of Virtualized Network
Function for realtime thread detection
using stream processing. Wolf and
Franklin (2000) propose telecom-
munication benchmark for network
processors. The authors adopt four
workloads for data stream processing in
telecommunications scenario. Trivedi
et al (2016) analyze yet another interest-
ing aspect, the (ir)relavance of network
bandwidth to modern streaming engines.
The key finding of this paper is that,
current streaming engines need signifi-
cant architectural improvements as they
cannot benefit from high bandwidth
networks.

Multi-Core Processors. Zhang et al
(2017) benchmark the current design of
stream data processing engines on multi-
core processors analyzing the possible
bottlenecks of massively parallel JVM
based streaming engines.

CEP. Mendes et al (2009) were
among the pioneers to propose a bench-
mark for CEP systems. The authors
provide series of queries to exercise
factors such as window size and policy,
selectivity and event dimensionality.
Mendes et al (2013) propose BiCEP,
the domain-specific benchmark suite, to
evaluate different performance aspects
of event processing platforms. Alevi-
zos and Artikis (2014) adopt existing
techniques to analyze widely used Esper
system which employs a SQL-based
language and RTEC which is a dialect
of the Event Calculus.

Machine Learning. Gama et al
(2009) propose the a general framework
for assessing predictive stream learning

algorithms. Gama et al (2013) focus on
decision models and develop a bench-
mark suite to evaluate continuously
evolving streaming and to detect and
react to realtime input data. Imai et al
(2017) utilize a machine learning model
to predict the maximum sustainable
throughput in streaming systems.

Bottlenecks. When designing a
system it is important to detect and
avoid bottlenecks. For streaming sys-
tems, Chintapalli et al (2016b) show
the Zookeeper being a main perfor-
mance bottleneck for Storm. For stream
benchmarks, Friedrich et al (2017) show
the limitations of existing benchmark
designs and the possible biased results.
Moreover, Artisans (2017) make a dis-
claimer for the original implementation
of Chintapalli et al (2016a), showing
an intermediate message layer, Kafka,
and external state management system,
Redis, are actually being a bottleneck
for Flink’s overall performance.

Cross Reference

Big Stream Processing
Distributed Systems for Big Data
Big Data Analysis
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